Updated Issues on Building Energy Efficiency of Recent Development

Course Fee

HK$300 (HK$150 for members of SFPE or IFE). Including all workshop papers and refreshments.

Free for PolyU-BSE Mentors.

Date
9 June 2009
Tuesday

Time
6.30 – 9.30 pm

Venue
Room Y302
The Hong Kong Polytechnic University

Reply to:
Ms. Carrie Lui
Tel: 2766 5850 Fax: 2765 7198
E-mail: carrie.lui@polyu.edu.hk

Department of Building Services Engineering
The Hong Kong Polytechnic University,
Hung Hom, Kowloon

Course Fee

I enclose a cheque of HK$300 for the registration for the lecture course on 9 June 2009.

I am a SFPE/IFE* member. I enclose a cheque of HK$150 for the registration for the lecture course on 9 June 2009.

I am a PolyU-BSE mentor, pleased to be invited to attend the lecture course for free on 9 June 2009.

Surname: ___________ First name: ________________ SFPE/IFE* Membership No: ______________________ Company Name: ... ____________________ __
Tel: __
E-mail: ______________________________________

(A Upon receipt of payment, reservations will be confirmed by e-mail. Cheques to be made payable to The Hong Kong Polytechnic University. Substitute delegates allowed provided advance notification is given. “First come first served” basis.)

Speakers

Professor Robert F Boehm & Dr. Chen Yitung
The Center for Energy Research
Department of Mechanical Engineering
University of Nevada, Las Vegas

Organized by
Professor W.K. Chow
Head of Department
Department of Building Services Engineering
Abstract

Part 1: The Center for Energy Research at UNLV has been involved in a variety of low energy and zero energy buildings for the Desert Southwestern region of US. This presentation will outline some of the goals of these buildings and their design aspects as well as performance results from them.

Part 2: The numerical simulation of the ceiling air distribution (CAD) system and the under floor air distribution (UFAD) system based on the dimensions of BT Lab at UNLV has been performed. Ceiling Air Distribution (CAD) with variable air volume (VAV) and under floor air distribution (UFAD) systems have been widely used in different countries. CAD–VAV and UFAD systems design have been influenced by increasing emphasis on indoor air quality (IAQ), energy conservation, environmental effects, safety, and economics. The computational fluid dynamics (CFD) analysis technique was applied to design high energy efficiency and human comfort CAD–VAV and UFAD systems. The experimental task group at UNLV has performed the UFAD systems compared to CAD systems, including comfort, energy use, indoor air quality IAQ. The experiment has been conducted based on ASHRAE Standard 113–1990 – Method of Testing for Room Air Diffusion. The obtained numerical results related to thermal comfort environment of the CAD & UFAD system have compared with the experimental results. The flow contours such as velocity, temperature, relative humidity and species concentration have been analyzed and parameters such as predicted mean vote (PMV) and contaminant removal effectiveness (CRE) have been calculated and are found to be in the comfort zone on the thermal sensation scale.